11 なぜレーダ・ポーラリメト リを使うのか

Outline

ポーラリメトリックレーダの 能力を活用するために

- ・レーダポーラリメトリで得られる情報
- ・散乱メカニズムによるターゲット分類
- ・定量的な情報
- ・微細な変化の検出
- · GB-SARによる地上検証実験

DETERMINISTIC SCATTERING

COMPLETELY POLARISED WAVE

RANDOM SCATTERING

PARTIALLY POLARISED WAVE

Polarisation Ellipse varies in time Amplitude, Phase: Random processes

STATISTICAL DESCRIPTION

H-Alpha による地表分類(自然環境の分類で有効)

H_alpha_class.bmp

Entropy: 散乱の乱雑さ Alpha: 散乱のメカニズム

粗さを持つ表面からのポーラリメトリック散乱

Polarimetric Borehole Radar

Tracer Tests (by USGS)

Two transmissive zones Zone #1: 40 m Zone #2: 47 m

Induced by Ground Surface Patch

Jong-Sen Lee, Dale L. Schuler, et al. The induced polarization orientation angle shift θis represented,

 $\tan\theta = \frac{-\tan\omega}{-\tan\gamma\cos\phi + \sin\phi}$

Where tan ω is the azimuth slope, tan γ is the range slope, ϕ is the radar look angle.

Induced by Dihedral Structure

Hiroshi Kimura, et al.

 $\tan\theta = \frac{-\tan\alpha}{\cos\phi}$

Where tan α is the target azimuth angle, ϕ is the radar look angle.

Terrain effect (Orientation angle shift)

Pi-SAR

New R&D for monitoring Earth Environment.

NiCT and JAXA developed Pi-SAR in 1996.

Pi-SAR: Airborne High-resolution Multi-parameter SAR

	X-band Main Antenna		X-band	L-band
Proposed Pro		Frequency	9.55GHz	1.27GHz
		Wave length	3.14cm	23.6cm
		Resolution	1.5m	3m
	X-band Sub Antenna	Observation mode	Polarimetry [HH/HV/VH/VV]	Polarimetry [HH/HV/VH/VV]
	©NICT/JAXA		Interferometry	

Investigation of the frequency dependence.

Difficulties, such as layover, shadowing, and multi-bounce, etc. In addition, our targets are dihedral structures.

 \Rightarrow A model fit for Urban structures.

Residential block

L-band, HH-VV, 2HV, HH+VV

Estimated PO Angle θ

X-band, HH-VV, 2HV, HH+VV

Estimated PO Angle $\boldsymbol{\theta}$

衛星搭載ポーラリメトリックSARの特長

- ・天候、昼夜を問わない計測
- ・微少な変化量の検知
- 散乱構造の変化の理解

≻被災家屋検知

- ≻土砂崩れの検知
- >不法投棄物検知

14 scenes in the north-south direction. 1 scene is about 36km*66km.

GB-SAR(地表設置型SAR)

広範囲の地表面偏波情報を取得、しかしその解釈は困難

制御されたターゲットの偏波情報 を取得可能

GB-SARによる地表面偏波過程の解析

パウリ行列分解法

だいち(ALOS)搭載合成開口レーダ(PALSAR)を用いた、 岩手・宮城内陸地震の観測

合成開ロレーダの特徴 昼夜天候に関係なくデータ 取得可能

使用画像 2008年3月23日(緑、青) 2008年6月23日(赤)

赤:電波強度明るくなる 青:電波強度暗くなる

地震前後のカラー合成画像

SAR干渉解析を用いた、地殻変動量の検出

Pi-SARによる中越地震被災地の検出

まとめ

- レーダポーラリメトリの情報は十分に活用されていない
- 分解能以下でも目標分類が可能(物の形を見るのではない)
- ・ 定量計測に特徴
- ・実例の積み重ねが必要
- 多様なプラットフォーム・多周波数・多偏波
 (ENVISAT/PALSAR/TerraSAR/RADASAT2)

IGARSS 2011 Sendai, Japan IEEE GRSS Japan Chapter

1 - 5 August, 2011

http://www.grssieee.org/

